197 research outputs found

    RUNX transcription factors at the interface of stem cells and cancer

    Get PDF
    The RUNX1 transcription factor is a critical regulator of normal haematopoiesis and its functional disruption by point mutations, deletions or translocations is a major causative factor leading to leukaemia. In the majority of cases, genetic changes in RUNX1 are linked to loss of function classifying it broadly as a tumour suppressor. Despite this, several recent studies have reported the need for a certain level of active RUNX1 for the maintenance and propagation of acute myeloid leukaemia and acute lymphoblastic leukaemia cells, suggesting an oncosupportive role of RUNX1. Furthermore, in solid cancers, RUNX1 is overexpressed compared with normal tissue, and RUNX factors have recently been discovered to promote growth of skin, oral, breast and ovarian tumour cells, amongst others. RUNX factors have key roles in stem cell fate regulation during homeostasis and regeneration of many tissues. Cancer cells appear to have corrupted these stem cell-associated functions of RUNX factors to promote oncogenesis. Here, we discuss current knowledge on the role of RUNX genes in stem cells and as oncosupportive factors in haematological malignancies and epithelial cancers

    The double-edged sword of CRISPR-Cas systems

    Get PDF
    A recent paper gives the details on how specific small RNAs can program a protein to cleave an undesired piece of DNA and to provide immunity to a microbial cell

    The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition

    Get PDF
    Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed

    Mir142 loss unlocks IDH2R140-dependent leukemogenesis through antagonistic regulation of HOX genes

    Get PDF
    AML is a genetically heterogeneous disease and understanding how different co-occurring mutations cooperate to drive leukemogenesis will be crucial for improving diagnostic and therapeutic options for patients. MIR142 mutations have been recurrently detected in IDH-mutated AML samples. Here, we have used a mouse model to investigate the interaction between these two mutations and demonstrate a striking synergy between Mir142 loss-of-function and IDH2R140Q, with only recipients of double mutant cells succumbing to leukemia. Transcriptomic analysis of the non-leukemic single and leukemic double mutant progenitors, isolated from these mice, suggested a novel mechanism of cooperation whereby Mir142 loss-of-function counteracts aberrant silencing of Hoxa cluster genes by IDH2R140Q. Our analysis suggests that IDH2R140Q is an incoherent oncogene, with both positive and negative impacts on leukemogenesis, which requires the action of cooperating mutations to alleviate repression of Hoxa genes in order to advance to leukemia. This model, therefore, provides a compelling rationale for understanding how different mutations cooperate to drive leukemogenesis and the context-dependent effects of oncogenic mutations

    Concerted action at eight phosphodiester bonds by the BcgI restriction endonuclease

    Get PDF
    The BcgI endonuclease exemplifies a subset of restriction enzymes, the Type IIB class, which make two double-strand breaks (DSBs) at each copy of their recognition sequence, one either side of the site, to excise the sequence from the remainder of the DNA. In this study, we show that BcgI is essentially inactive when bound to a single site and that to cleave a DNA with one copy of its recognition sequence, it has to act in trans, bridging two separate DNA molecules. We also show that BcgI makes the two DSBs at an individual site in a highly concerted manner. Intermediates cut on one side of the site do not accumulate during the course of the reaction: instead, the DNA is converted straight to the final products cut on both sides. On DNA with two sites, BcgI bridges the sites in cis and then generally proceeds to cut both strands on both sides of both sites without leaving the DNA. The BcgI restriction enzyme can thus excise two DNA segments together, by cleaving eight phosphodiester bonds within a single-DNA binding event

    Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases

    Get PDF
    Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.National Institutes of Health (U.S.) (New Innovator Award 1DP2OD008435)National Centers for Systems Biology (U.S.) (Grant 1P50GM098792)United States. Defense Threat Reduction Agency (HDTRA1-14-1-0007)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (W911NF13D0001)National Institute of General Medical Sciences (U.S.) (Interdepartmental Biotechnology Training Program 5T32 GM008334)Fonds de la recherche en sante du Quebec (Master's Training Award

    CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering

    Get PDF
    Prokaryotic type II CRISPR-Cas systems can be adapted to enable targeted genome modifications across a range of eukaryotes.1–7. Here we engineer this system to enable RNA-guided genome regulation in human cells by tethering transcriptional activation domains either directly to a nuclease-null Cas9 protein or to an aptamer-modified single guide RNA (sgRNA). Using this functionality we developed a novel transcriptional activation–based assay to determine the landscape of off-target binding of sgRNA:Cas9 complexes and compared it with the off-target activity of transcription activator–like (TAL) effector proteins8, 9. Our results reveal that specificity profiles are sgRNA dependent, and that sgRNA:Cas9 complexes and 18-mer TAL effector proteins can potentially tolerate 1–3 and 1–2 target mismatches, respectively. By engineering a requirement for cooperativity through offset nicking for genome editing or through multiple synergistic sgRNAs for robust transcriptional activation, we suggest methods to mitigate off-target phenomena. Our results expand the versatility of the sgRNA:Cas9 tool and highlight the critical need to engineer improved specificity

    Diverse CRISPRs Evolving in Human Microbiomes

    Get PDF
    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR–associated) genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP) enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes), we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones) are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals. This work indicates the importance of effective identification and characterization of CRISPR loci to the study of the dynamic ecology of microbiomes

    Phage-Induced Expression of CRISPR-Associated Proteins Is Revealed by Shotgun Proteomics in Streptococcus thermophilus

    Get PDF
    The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic repeats along with their associated (Cas) proteins, protects bacteria and archaea from viral predation and invading nucleic acids. While the mechanism of action for this acquired immunity is currently under investigation, the response of Cas protein expression to phage infection has yet to be elucidated. In this study, we employed shotgun proteomics to measure the global proteome expression in a model system for studying the CRISPR/Cas response in S. thermophilus DGCC7710 infected with phage 2972. Host and viral proteins were simultaneously measured following inoculation at two different multiplicities of infection and across various time points using two-dimensional liquid chromatography tandem mass spectrometry. Thirty-seven out of forty predicted viral proteins were detected, including all proteins of the structural virome and viral effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were detected, facilitating the monitoring of host protein synthesis changes in response to virus infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus DGCC7710 genome were detected, including loci previously thought to be inactive. Many Cas proteins were found to be constitutively expressed, but several demonstrated increased abundance following infection, including the signature Cas9 proteins from the CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 infection

    Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening

    Get PDF
    Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified by the screen, we further describe strategies for confirming the screening phenotype, as well as genetic perturbation, through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9-15 weeks, followed by 4-5 weeks of validation.Paul & Daisy Soros Fellowships for New Americans (New York, N.Y.)McGovern Institute for Brain Research at MIT (Friends of McGovern Institute Fellowship)Massachusetts Institute of Technology. Poitras Center for Affective Disorders ResearchUnited States. Department of Energy (Computational Science Graduate Fellowship)National Institute of Mental Health (U.S.) (5DP1-MH100706)National Institute of Mental Health (U.S.) (1R01-MH110049)New York Stem Cell FoundationPoitras FoundationSimons FoundationPaul G. Allen Family FoundationVallee FoundationTom HarrimanB. Metcalf
    corecore